General Relativity and Quantum Cosmology
[Submitted on 18 Nov 2024 (v1), last revised 25 Nov 2024 (this version, v2)]
Title:Binary Black Hole Waveforms from High-Resolution GR-Athena++ Simulations
View PDF HTML (experimental)Abstract:The detection and subsequent inference of binary black hole signals rely heavily on the accuracy of the waveform model employed. In the highly non-linear, dynamic, and strong-field regime near merger, these waveforms can only be accurately modeled through numerical relativity simulations. Considering the precision requirements of next-generation gravitational wave observatories, we present in this paper high-resolution simulations of four non-spinning quasi-circular binary black hole systems with mass ratios of 1, 2, 3, and 4, conducted using the GR-Athena++ code. We extract waveforms from these simulations using both finite radius and Cauchy characteristic extraction methods. Additionally, we provide a comprehensive error analysis to evaluate the accuracy and convergence of the waveforms. This dataset encompasses gravitational waves of the precision (self-mismatch) demanded by upcoming gravitational detectors such as LISA, Cosmic Explorer, and Einstein Telescope. The waveforms are publicly available on ScholarSphere, and represent the first set of waveforms of the new GR-Athena++ catalog.
Submission history
From: Alireza Rashti [view email][v1] Mon, 18 Nov 2024 19:21:53 UTC (16,120 KB)
[v2] Mon, 25 Nov 2024 23:08:37 UTC (16,128 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.