Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 19 Nov 2024]
Title:Adaptive Cache Management for Complex Storage Systems Using CNN-LSTM-Based Spatiotemporal Prediction
View PDFAbstract:This paper proposes an intelligent cache management strategy based on CNN-LSTM to improve the performance and cache hit rate of storage systems. Through comparative experiments with traditional algorithms (such as LRU and LFU) and other deep learning models (such as RNN, GRU-RNN and LSTM), the results show that the CNN-LSTM model has significant advantages in cache demand prediction. The MSE and MAE values of this model are significantly reduced, proving its effectiveness under complex data access patterns. This study not only verifies the potential of deep learning technology in storage system optimization, but also provides direction and reference for further optimizing and improving cache management strategies. This intelligent cache management strategy performs well in complex storage environments. By combining the spatial feature extraction capabilities of convolutional neural networks and the time series modeling capabilities of long short-term memory networks, the CNN-LSTM model can more accurately predict cache needs, thereby Dynamically optimize cache allocation to improve system response speed and resource utilization. This research provides theoretical support and practical reference for cache optimization under large-scale data access modes, and is of great significance to improving the performance of future storage systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.