Mathematics > Category Theory
[Submitted on 19 Nov 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Correspondences between codensity and coupling-based liftings, a practical approach
View PDFAbstract:The Kantorovich distance is a widely used metric between probability distributions. The Kantorovich-Rubinstein duality states that it can be defined in two equivalent ways: as a supremum, based on non-expansive functions into [0, 1], and as an infimum, based on probabilistic couplings.</p><p>Orthogonally, there are categorical generalisations of both presentations proposed in the literature, in the form of codensity liftings and what we refer to as coupling-based liftings. Both lift endofunctors on the category Set of sets and functions to that of pseudometric spaces, and both are parameterised by modalities from coalgebraic modal logic. A generalisation of the Kantorovich-Rubinstein duality has been more nebulous-it is known not to work in some cases. In this paper we propose a compositional approach for obtaining such generalised dualities for a class of functors, which is closed under coproducts and products. Our approach is based on an explicit construction of modalities and also applies to and extends known cases such as that of the powerset functor.
Submission history
From: Samuel HUMEAU [view email] [via CCSD proxy][v1] Tue, 19 Nov 2024 08:36:06 UTC (166 KB)
[v2] Thu, 21 Nov 2024 09:38:02 UTC (42 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.