Quantum Physics
[Submitted on 19 Nov 2024]
Title:High-precision minmax solution of the two-center Dirac equation
View PDF HTML (experimental)Abstract:We present a high-precision solution of Dirac equation by numerically solving the minmax two-center Dirac equation with the finite element method (FEM). The minmax FEM provide a highly accurate benchmark result for systems with light or heavy atomic nuclear charge $Z$. A result is shown for the molecular ion ${\rm H}_2^+$ and the heavy quasi-molecular ion ${\rm Th}_2^{179+}$, with estimated fractional uncertainties of $\sim 10^{-23}$ and $\sim 10^{-21}$, respectively. The result of the minmax-FEM high-precision of the solution of the two-center Dirac equation, allows solid control over the required accuracy level and is promising for the application and extension of our method.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.