Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 19 Nov 2024]
Title:Assessing Matched Filtering for Core-Collapse Supernova Gravitational-Wave Detection
View PDF HTML (experimental)Abstract:Gravitational waves from core-collapse supernovae are a promising yet challenging target for detection due to the stochastic and complex nature of these signals. Conventional detection methods for core-collapse supernovae rely on excess energy searches because matched filtering has been hindered by the lack of well-defined waveform templates. However, numerical simulations of core-collapse supernovae have improved our understanding of the gravitational wave signals they emit, which enables us, for the first time, to construct a set of templates that closely resemble predictions from numerical simulations. In this study, we investigate the possibility of detecting gravitational waves from core-collapse supernovae using a matched-filtering methods. We construct a theoretically-informed template bank and use it to recover a core-collapse supernova signal injected into real LIGO-Virgo-KAGRA detector data. We evaluate the detection efficiency of the matched-filtering approach and how well the injected signal is reconstructed. We discuss the false alarm rate of our approach and investigate the main source of false triggers. We recover 88\% of the signals injected at a distance of 1 kpc and 50% of the signals injected at 2 kpc. For more than 50% of the recovered events, the underlying signal characteristics are reconstructed within an error of 15%. We discuss the strengths and limitations of this approach and identify areas for further improvements to advance the potential of matched filtering for supernova gravitational-wave detection. We also present the open-source Python package SynthGrav used to generate the template bank.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.