Mathematics > Probability
[Submitted on 19 Nov 2024]
Title:Random signed measures
View PDF HTML (experimental)Abstract:Point processes and, more generally, random measures are ubiquitous in modern statistics. However, they can only take positive values, which is a severe limitation in many situations. In this work, we introduce and study random signed measures, also known as real-valued random measures, and apply them to constrcut various Bayesian non-parametric models. In particular, we provide an existence result for random signed measures, allowing us to obtain a canonical definition for them and solve a 70-year-old open problem. Further, we provide a representation of completely random signed measures (CRSMs), which extends the celebrated Kingman's representation for completely random measures (CRMs) to the real-valued case. We then introduce specific classes of random signed measures, including the Skellam point process, which plays the role of the Poisson point process in the real-valued case, and the Gaussian random measure. We use the theoretical results to develop two Bayesian nonparametric models -- one for topic modeling and the other for random graphs -- and to investigate mean function estimation in Bayesian nonparametric regression.
Submission history
From: Riccardo Passeggeri [view email][v1] Tue, 19 Nov 2024 16:34:03 UTC (42 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.