Condensed Matter > Statistical Mechanics
[Submitted on 19 Nov 2024]
Title:Correction-to-scaling exponent for percolation and the Fortuin--Kasteleyn Potts model in two dimensions
View PDF HTML (experimental)Abstract:The number $n_s$ of clusters (per site) of size $s$, a central quantity in percolation theory, displays at criticality an algebraic scaling behavior of the form $n_s\simeq s^{-\tau}\, A\, (1+B s^{-\Omega})$. For the Fortuin--Kasteleyn representation of the $Q$-state Potts model in two dimensions, the Fisher exponent $\tau$ is known as a function of the real parameter $0\le Q\le4$, and, for bond percolation (the $Q\rightarrow 1$ limit), the correction-to-scaling exponent is derived as $\Omega=72/91$. We theoretically derive the exact formula for the correction-to-scaling exponent $\Omega=8/[(2g+1)(2g+3)]$ as a function of the Coulomb-gas coupling strength $g$, which is related to $Q$ by $Q=2+2\cos(2 \pi g)$. Using an efficient Monte Carlo cluster algorithm, we study the O($n$) loop model on the hexagonal lattice, which is in the same universality class as the $Q=n^2$ Potts model, and has significantly suppressed finite-size corrections and critical slowing-down. The predictions of the above formula include the exact value for percolation as a special case, and agree well with the numerical estimates of $\Omega$ for both the critical and tricritical branches of the Potts model.
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.