Physics > Plasma Physics
[Submitted on 19 Nov 2024]
Title:Energy balance for 6D kinetic ions with adiabatic electrons
View PDF HTML (experimental)Abstract:This paper investigates the energy fluxes for the 6D kinetic Vlasov system. We introduce a novel method for calculating particle and energy flows within this framework which allows for the determination of energy and particle fluxes, as well as the Poynting flux, directly from the system's moments such as kinetic energy density, momentum transfer tensor. The fluxes computed using the new method exhibit fewer gyrooscillations. This approach also enables the identification of both the gyrokinetic $\vec{E} \times \vec{B}$ heat flux and additional non-gyrokinetic contributions, while simultaneously reducing inherent gyrooscillations in the energy and particle fluxes. Our semi-Lagrangian solver for the 6D kinetic Vlasov system, features a highly efficient scheme to address the $\vec v \times \vec B$ acceleration from the strong background magnetic field allows for the simulation of plasma waves and turbulence with frequencies extending beyond the cyclotron frequency, independent of gradient strength or fluctuation levels. The solver has been rigorously tested in the low-frequency regime for dispersion relations and energy fluxes in both linear and nonlinear scenarios.
Current browse context:
physics.plasm-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.