Physics > Optics
[Submitted on 19 Nov 2024]
Title:X-ray Phase Measurements by Time-Energy Correlated Photon Pairs
View PDF HTML (experimental)Abstract:The invention of X-ray interferometers has led to advanced phase-sensing devices that are invaluable in various applications. These include the precise measurement of universal constants, e.g. the Avogadro number, of lattice parameters of perfect crystals, and phase-contrast imaging, which resolves details that standard absorption imaging cannot capture. However, the sensitivity and robustness of conventional X-ray interferometers are constrained by factors, such as fabrication precision, beam quality, and, importantly, noise originating from external sources or the sample itself. In this work, we demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise, by extending, for the first time, the concept of the SU(1,1) interferometer into the X-ray regime. We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion (SPDC). Arrival time coincidence and sum-energy filtration allow a high-precision separation of the correlated photon pairs, which carry the phase information from orders-of-magnitude larger uncorrelated photonic noise. The novel SPDC-based interferometric method presented here is anticipated to exhibit enhanced immunity to vibrations as well as to mechanical and photonic noise, compared to conventional X-ray interferometers. Therefore, this SU(1,1) X-ray interferometer should pave the way to unprecedented precision in phase measurements, with transformative implications for a wide range of applications.
Current browse context:
physics.optics
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.