Quantitative Finance > Trading and Market Microstructure
[Submitted on 6 Nov 2024]
Title:Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data
View PDF HTML (experimental)Abstract:This paper investigates the enhancement of financial time series forecasting with the use of neural networks through supervised autoencoders (SAE), to improve investment strategy performance. Using the Sharpe and Information Ratios, it specifically examines the impact of noise augmentation and triple barrier labeling on risk-adjusted returns. The study focuses on Bitcoin, Litecoin, and Ethereum as the traded assets from January 1, 2016, to April 30, 2022. Findings indicate that supervised autoencoders, with balanced noise augmentation and bottleneck size, significantly boost strategy effectiveness. However, excessive noise and large bottleneck sizes can impair performance.
Submission history
From: Bartosz Bieganowski [view email][v1] Wed, 6 Nov 2024 08:43:03 UTC (4,378 KB)
Current browse context:
q-fin.TR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.