Quantum Physics
[Submitted on 20 Nov 2024]
Title:The Influence of Thermal Fluctuations on Bosonic Correlations and the AC Stark Effect in Two-Level Atoms: A Superstatistical Perspective
View PDF HTML (experimental)Abstract:We study the influence of thermal fluctuations on the two-time correlation functions of bosonic baths within a superstatistics framework by assuming that fluctuations follow the gamma distribution. We further establish a connection between superstatistics and Tsallis non-additive thermodynamics by introducing a temperature-renormalizing parameter. Our results show that, for an Ohmic model, the system's correlation functions exhibit diverse time-dependent behaviors, with the real and imaginary parts displaying enhancement or suppression depending on temperature and fluctuation strength. Additionally, we analyze the impact of these fluctuations on the quantum master equation of a damped two-level atom coupled to an out-of-equilibrium radiation bath. We demonstrate that while the equation's algebraic structure remains intact, the coupling constants are modified by the fluctuation parameters and cavity volume. Specifically, we observe that the AC Stark effect undergoes significant modifications, with fluctuations influencing the transition between repulsive and attractive energy levels.
Submission history
From: Jorge David Castano-Yepes [view email][v1] Wed, 20 Nov 2024 00:25:44 UTC (2,097 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.