Computer Science > Machine Learning
[Submitted on 20 Nov 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Deriving Activation Functions via Integration
View PDF HTML (experimental)Abstract:Activation functions play a crucial role in introducing non-linearities to deep neural networks. We propose a novel approach to designing activation functions by focusing on their gradients and deriving the corresponding functions through integration. Our work introduces the Expanded Integral of the Exponential Linear Unit (xIELU), a trainable piecewise activation function derived by integrating trainable affine transformations applied on the ELU activation function. xIELU combines two key gradient properties: a trainable and linearly increasing gradient for positive inputs, similar to ReLU$^2$, and a trainable negative gradient flow for negative inputs, akin to xSiLU. Conceptually, xIELU can be viewed as extending ReLU$^2$ to effectively handle negative inputs. In experiments with 1.1B parameter Llama models trained on 126B tokens of FineWeb Edu, xIELU achieves lower perplexity compared to both ReLU$^2$ and SwiGLU when matched for the same compute cost and parameter count.
Submission history
From: Allen Huang [view email][v1] Wed, 20 Nov 2024 03:24:21 UTC (298 KB)
[v2] Thu, 21 Nov 2024 20:08:34 UTC (298 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.