Electrical Engineering and Systems Science > Systems and Control
[Submitted on 20 Nov 2024]
Title:Quantitative Fairness -- A Framework For The Design Of Equitable Cybernetic Societies
View PDF HTML (experimental)Abstract:Advancements in computer science, artificial intelligence, and control systems of the recent have catalyzed the emergence of cybernetic societies, where algorithms play a significant role in decision-making processes affecting the daily life of humans in almost every aspect. Algorithmic decision-making expands into almost every industry, government processes critical infrastructure, and shapes the life-reality of people and the very fabric of social interactions and communication. Besides the great potentials to improve efficiency and reduce corruption, missspecified cybernetic systems harbor the threat to create societal inequities, systematic discrimination, and dystopic, totalitarian societies. Fairness is a crucial component in the design of cybernetic systems, to promote cooperation between selfish individuals, to achieve better outcomes at the system level, to confront public resistance, to gain trust and acceptance for rules and institutions, to perforate self-reinforcing cycles of poverty through social mobility, to incentivize motivation, contribution and satisfaction of people through inclusion, to increase social-cohesion in groups, and ultimately to improve life quality. Quantitative descriptions of fairness are crucial to reflect equity into algorithms, but only few works in the fairness literature offer such measures; the existing quantitative measures in the literature are either too application-specific, suffer from undesirable characteristics, or are not ideology-agnostic. Therefore, this work proposes a quantitative, transactional, distributive fairness framework, which enables systematic design of socially feasible decision-making systems. Moreover, it emphasizes the importance of fairness and transparency when designing algorithms for equitable, cybernetic societies.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.