Mathematics > Statistics Theory
[Submitted on 20 Nov 2024 (v1), last revised 21 Nov 2024 (this version, v2)]
Title:Sharp Bounds for Multiple Models in Matrix Completion
View PDF HTML (experimental)Abstract:In this paper, we demonstrate how a class of advanced matrix concentration inequalities, introduced in \cite{brailovskaya2024universality}, can be used to eliminate the dimensional factor in the convergence rate of matrix completion. This dimensional factor represents a significant gap between the upper bound and the minimax lower bound, especially in high dimension. Through a more precise spectral norm analysis, we remove the dimensional factors for five different estimators in various settings, thereby establishing their minimax rate optimality.
Submission history
From: Dali Liu [view email][v1] Wed, 20 Nov 2024 10:59:30 UTC (26 KB)
[v2] Thu, 21 Nov 2024 02:32:15 UTC (26 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.