Physics > Optics
[Submitted on 20 Nov 2024]
Title:Miniaturized spectrometer enabled by end-to-end deep learning on large-scale radiative cavity array
View PDF HTML (experimental)Abstract:Miniaturized (mini-) spectrometers are highly desirable tools for chemical, biological, and medical diagnostics because of their potential for portable and in situ spectral detection. In this work, we propose and demonstrate a mini-spectrometer that combines a large-scale radiative cavity array with end-to-end deep learning networks. Specifically, we utilize high-Q bound states in continuum cavities with distinct radiation characteristics as the fundamental units to achieve parallel spectral detection. We realize a 36 $\times$ 30 cavity array that spans a wide spectral range from 1525 to 1605 nm with quality factors above 10^4. We further train a deep network with 8000 outputs to directly map arbitrary spectra to array responses excited by the out-of-plane incident. Experimental results demonstrate that the proposed mini-spectrometer can resolve unknown spectra with a resolution of 0.048 nm in a bandwidth of 80 nm and fidelity exceeding 95%, thus offering a promising method for compact, high resolution, and broadband spectroscopy.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.