Statistics > Machine Learning
[Submitted on 20 Nov 2024]
Title:Sensitivity Analysis on Policy-Augmented Graphical Hybrid Models with Shapley Value Estimation
View PDF HTML (experimental)Abstract:Driven by the critical challenges in biomanufacturing, including high complexity and high uncertainty, we propose a comprehensive and computationally efficient sensitivity analysis framework for general nonlinear policy-augmented knowledge graphical (pKG) hybrid models that characterize the risk- and science-based understandings of underlying stochastic decision process mechanisms. The criticality of each input (i.e., random factors, policy parameters, and model parameters) is measured by applying Shapley value (SV) sensitivity analysis to pKG (called SV-pKG), accounting for process causal interdependences. To quickly assess the SV for heavily instrumented bioprocesses, we approximate their dynamics with linear Gaussian pKG models and improve the SV estimation efficiency by utilizing the linear Gaussian properties. In addition, we propose an effective permutation sampling method with TFWW transformation and variance reduction techniques, namely the quasi-Monte Carlo and antithetic sampling methods, to further improve the sampling efficiency and estimation accuracy of SV for both general nonlinear and linear Gaussian pKG models. Our proposed framework can benefit efficient interpretation and support stable optimal process control in biomanufacturing.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.