Mathematics > Combinatorics
[Submitted on 20 Nov 2024]
Title:Exact threshold and lognormal limit for non-linear Hamilton cycles
View PDF HTML (experimental)Abstract:For positive integers $r > \ell \geq 1$, an $\ell$-cycle in an $r$-uniform hypergraph is a cycle where each edge consists of $r$ vertices and each pair of consecutive edges intersect in $\ell$ vertices. We show that for $\ell \geq 2$, a random $r$-uniform hypergraph contains a Hamilton $\ell$-cycle with high probability whenever the expected number of such cycles tends to infinity. Moreover, for $\ell = 2$, we show that the normalized number of Hamilton $2$-cycles converges to a lognormal distribution. This determines the exact threshold for the appearance of non-linear Hamilton cycles in random hypergraphs, confirming a conjecture of Narayanan and Schacht.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.