Computer Science > Information Theory
[Submitted on 20 Nov 2024]
Title:Polynomial Freiman-Ruzsa, Reed-Muller codes and Shannon capacity
View PDF HTML (experimental)Abstract:In 1948, Shannon used a probabilistic argument to show the existence of codes achieving a maximal rate defined by the channel capacity. In 1954, Muller and Reed introduced a simple deterministic code construction, based on polynomial evaluations, conjectured shortly after to achieve capacity. The conjecture led to decades of activity involving various areas of mathematics and the recent settlement by [AS23] using flower set boosting. In this paper, we provide an alternative proof of the weak form of the capacity result, i.e., that RM codes have a vanishing local error at any rate below capacity. Our proof relies on the recent Polynomial Freiman-Ruzsa conjecture's proof [GGMT23] and an entropy extraction approach similar to [AY19]. Further, a new additive combinatorics conjecture is put forward which would imply the stronger result with vanishing global error. We expect the latter conjecture to be more directly relevant to coding applications.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.