Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Nov 2024]
Title:Multi LoRA Meets Vision: Merging multiple adapters to create a multi task model
View PDFAbstract:Parameter efficient finetuning (PEFT) methods are widely used in LLMs and generative models in computer vision. Especially one can use multiple of these during inference to change the behavior of the base model. In this paper we investigated whether multiple LoRA adapters trained on computer vision tasks can be merged together and used during inference without loss in performance. By achieving this, multitask models can be created just by merging different LoRAs. Merging these will reduce inference time and it will not require any additional retraining. We have trained adapters on six different tasks and evaluated their performance when they are merged together. For comparison we used a model with a frozen backbone and finetuned its head. Our results show that even with simple merging techniques creating a multitask model by merging adapters is achievable by slightly loosing performance in some cases. In our experiments we merged up to three adapters together. Depending on the task and the similarity of the data adapters were trained on, merges can outperform head finetuning. We have observed that LoRAs trained with dissimilar datasets tend to perform better compared to model trained on similar datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.