Quantum Physics
[Submitted on 21 Nov 2024]
Title:Super-Extensive Scaling in 1D Spin$-1/2$ $XY-Γ(γ)$ Chain Quantum Battery
View PDFAbstract:We investigate the performance of a one-dimensional (1D) spin-$1/2$ Heisenberg $XY-\Gamma(\gamma)$ quantum chain as a working medium for a quantum battery (QB) and analyze both closed and open system scenarios. The closed QB scenario is explored by analytically evaluating ergotropy across different spin-spin couplings, anisotropies in spin interactions, Zeeman field strengths, charging field intensities, $\Gamma$ interactions, and temperature. Results indicate that ergotropy is highly dependent on spin-spin coupling and anisotropy. Under variable parameters, an increase in the spin-spin coupling strength displays quenches and exhibits non-equilibrium trends in ergotropy. After a quench, ergotropy may experience a sharp increase or drop -- suggesting optimal operational conditions for QB performance. In the open QB scenario, we examine spin chains of sizes $2 \leq N \leq 8$ under the influence of dephasing, focusing on the evolution of ergotropy. We study two charging schemes: parallel charging, where spins are non-interacting, and collective charging, involving spin-spin coupling. In the former, increased Zeeman field strength enhances both the peak ergotropy and charging rate, although without any quantum advantage or super-extensive scaling. In the latter, increasing spin-spin coupling might not achieve super-extensive scaling without introducing anisotropy in the spin-spin interaction. Our results suggest that optimal QB performance and a quantum advantage in scaling can be achieved by leveraging anisotropic spin-spin couplings and non-zero $\Gamma$ interactions, allowing for faster charging and higher ergotropy under super-extensive scaling conditions up to $\alpha=1.24$ for the given size of the spin chain.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.