Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Nov 2024]
Title:WARLearn: Weather-Adaptive Representation Learning
View PDF HTML (experimental)Abstract:This paper introduces WARLearn, a novel framework designed for adaptive representation learning in challenging and adversarial weather conditions. Leveraging the in-variance principal used in Barlow Twins, we demonstrate the capability to port the existing models initially trained on clear weather data to effectively handle adverse weather conditions. With minimal additional training, our method exhibits remarkable performance gains in scenarios characterized by fog and low-light conditions. This adaptive framework extends its applicability beyond adverse weather settings, offering a versatile solution for domains exhibiting variations in data distributions. Furthermore, WARLearn is invaluable in scenarios where data distributions undergo significant shifts over time, enabling models to remain updated and accurate. Our experimental findings reveal a remarkable performance, with a mean average precision (mAP) of 52.6% on unseen real-world foggy dataset (RTTS). Similarly, in low light conditions, our framework achieves a mAP of 55.7% on unseen real-world low light dataset (ExDark). Notably, WARLearn surpasses the performance of state-of-the-art frameworks including FeatEnHancer, Image Adaptive YOLO, DENet, C2PNet, PairLIE and ZeroDCE, by a substantial margin in adverse weather, improving the baseline performance in both foggy and low light conditions. The WARLearn code is available at this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.