General Relativity and Quantum Cosmology
[Submitted on 21 Nov 2024]
Title:Dark universe inspired by the Kaluza-Klein gravity
View PDF HTML (experimental)Abstract:We explore the potential implications of Kaluza-Klein (KK) gravity in unifying the dark sector of the Universe. Through dimensional reduction in KK gravity, the 5D spacetime framework can be reformulated in terms of a 4D spacetime metric, along with additional scalar and vector fields. From the 4D perspective, this suggests the existence of a tower of particle states, including KK gravitons with massive spin-0 and spin-1 states, in addition to the massless spin-2 gravitons of general relativity (GR). By assuming a minimal coupling between the self-interacting scalar field and the gauge field, a "mass" term emerges for the spin-1 gravitons. This, in turn, leads to long-range gravitational effects that could modify Newton's law of gravity through Yukawa-type corrections. We draw an analogy with superconductivity theory, where the condensation of a scalar field results in the emergence of massive spin-1 particles producing repulsive forces, along with an increase of the gravitational force due the correction to Newton's constant. Assuming an environment-dependent mass for the spin-1 graviton, near the galactic center the repulsive force from this spin-1 graviton is suppressed by an additional attractive component from Newton's constant corrections, resulting in a Newtonian-like, attraction-dominated effect. In the galaxy's outer regions, the repulsive force fades due to its short range, making dark matter appear only as an effective outcome of the dominant attractive corrections. This approach also explains dark matter's emergence as an apparent effects on cosmological scales while our model is equivalent to the scalar-vector-tensor gravity theory. Finally, we examine the impact of dark matter on the primordial gravitational wave (PGW) spectrum and show that it is sensitive to dark matter effects, providing an opportunity to test this theory through future GW observatories.
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.