Electrical Engineering and Systems Science > Systems and Control
[Submitted on 21 Nov 2024]
Title:Formal Simulation and Visualisation of Hybrid Programs
View PDFAbstract:The design and analysis of systems that combine computational behaviour with physical processes' continuous dynamics - such as movement, velocity, and voltage - is a famous, challenging task. Several theoretical results from programming theory emerged in the last decades to tackle the issue; some of which are the basis of a proof-of-concept tool, called Lince, that aids in the analysis of such systems, by presenting simulations of their respective behaviours.
However being a proof-of-concept, the tool is quite limited with respect to usability, and when attempting to apply it to a set of common, concrete problems, involving autonomous driving and others, it either simply cannot simulate them or fails to provide a satisfactory user-experience.
The current work complements the aforementioned theoretical approaches with a more practical perspective, by improving Lince along several dimensions: to name a few, richer syntactic constructs, more operations, more informative plotting systems and errors messages, and a better performance overall. We illustrate our improvements via a variety of examples that involve both autonomous driving and electrical systems.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Thu, 21 Nov 2024 18:07:14 UTC (790 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.