Computer Science > Computational Complexity
[Submitted on 21 Nov 2024]
Title:On Optimal Testing of Linearity
View PDF HTML (experimental)Abstract:Linearity testing has been a focal problem in property testing of functions. We combine different known techniques and observations about linearity testing in order to resolve two recent versions of this task.
First, we focus on the online manipulations model introduced by Kalemaj, Raskhodnikova and Varma (ITCS 2022 \& Theory of Computing 2023). In this model, up to $t$ data entries are adversarially manipulated after each query is answered. Ben-Eliezer, Kelman, Meir, and Raskhodnikova (ITCS 2024) showed an asymptotically optimal linearity tester that is resilient to $t$ manipulations per query, but their approach fails if $t$ is too large. We extend this result, showing an optimal tester for almost any possible value of $t$. First, we simplify their result when $t$ is small, and for larger values of $t$ we instead use sample-based testers, as defined by Goldreich and Ron (ACM Transactions on Computation Theory 2016). A key observation is that sample-based testing is resilient to online manipulations, but still achieves optimal query complexity for linearity when $t$ is large. We complement our result by showing that when $t$ is \emph{very} large, any reasonable property, and in particular linearity, cannot be tested at all.
Second, we consider linearity over the reals with proximity parameter $\varepsilon$. Fleming and Yoshida (ITCS 2020) gave a tester using $O(1/\varepsilon\ \cdot log(1/\varepsilon))$ queries. We simplify their algorithms and modify the analysis accordingly, showing an optimal tester that only uses $O(1/\varepsilon)$ queries. This modification works for the low-degree testers presented in Arora, Bhattacharyya, Fleming, Kelman, and Yoshida (SODA 2023) as well, resulting in optimal testers for degree-$d$ polynomials, for any constant degree $d$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.