Computer Science > Cryptography and Security
[Submitted on 10 Nov 2024 (v1), last revised 25 Nov 2024 (this version, v2)]
Title:Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
View PDFAbstract:Deep learning models are vulnerable to backdoor attacks, where adversaries inject malicious functionality during training that activates on trigger inputs at inference time. Extensive research has focused on developing stealthy backdoor attacks to evade detection and defense mechanisms. However, these approaches still have limitations that leave the door open for detection and mitigation due to their inherent design to cause malicious behavior in the presence of a trigger. To address this limitation, we introduce Deferred Activated Backdoor Functionality (DABF), a new paradigm in backdoor attacks. Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered. This stealthy behavior allows DABF to bypass multiple detection and defense methods, remaining undetected during initial inspections. The backdoor functionality is strategically activated only after the model undergoes subsequent updates, such as retraining on benign data. DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment. To implement DABF attacks, we approach the problem by making the unlearning of the backdoor fragile, allowing it to be easily cancelled and subsequently reactivate the backdoor functionality. To achieve this, we propose a novel two-stage training scheme, called DeferBad. Our extensive experiments across various fine-tuning scenarios, backdoor attack types, datasets, and model architectures demonstrate the effectiveness and stealthiness of DeferBad.
Submission history
From: Jeongjin Shin [view email][v1] Sun, 10 Nov 2024 07:01:53 UTC (1,419 KB)
[v2] Mon, 25 Nov 2024 06:51:39 UTC (1,450 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.