Computer Science > Artificial Intelligence
[Submitted on 19 Nov 2024]
Title:Associative Knowledge Graphs for Efficient Sequence Storage and Retrieval
View PDF HTML (experimental)Abstract:This paper presents a novel approach for constructing associative knowledge graphs that are highly effective for storing and recognizing sequences. The graph is created by representing overlapping sequences of objects, as tightly connected clusters within the larger graph. Individual objects (represented as nodes) can be a part of multiple sequences or appear repeatedly within a single sequence. To retrieve sequences, we leverage context, providing a subset of objects that triggers an association with the complete sequence. The system's memory capacity is determined by the size of the graph and the density of its connections. We have theoretically derived the relationships between the critical density of the graph and the memory capacity for storing sequences. The critical density is the point beyond which error-free sequence reconstruction becomes impossible. Furthermore, we have developed an efficient algorithm for ordering elements within a sequence. Through extensive experiments with various types of sequences, we have confirmed the validity of these relationships. This approach has potential applications in diverse fields, such as anomaly detection in financial transactions or predicting user behavior based on past actions.
Submission history
From: Przemysław Stokłosa [view email][v1] Tue, 19 Nov 2024 13:00:31 UTC (1,592 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.