Condensed Matter > Materials Science
[Submitted on 20 Nov 2024]
Title:Hierarchical multiscale fracture modeling of carbon-nitride nanosheet reinforced composites by combining cohesive phase-field and molecular dynamics
View PDF HTML (experimental)Abstract:Understanding the fracture mechanisms in composite materials across scales, from nano- to micro-scales, is essential for an in-depth understanding of the reinforcement mechanisms and designing the next generation of lightweight, high-strength composites. However, conventional methods struggle to model the complex fracture behavior of nanocomposites, particularly at the fiber-matrix interface. The phase-field regularized cohesive fracture model has proven to be effective in simulating crack initiation, branching, and propagation; however, capturing the cohesive fracture strength at smaller scales remains a significant challenge. This study introduces a novel approach that combines an energy-based star-convex decomposition cohesive phase-field fracture model with molecular dynamics simulations to explore the thickness dependency of nanocomposite mechanical properties. The proposed framework enables hierarchical modeling of carbon-nitride nanosheet-reinforced composites' mechanical and fracture behaviors. The developed model could elucidate complex fracture processes across different scales and highlight critical scaling effects. This methodology provides an efficient solution for uncovering hierarchical fracture mechanisms in reinforced nanocomposites, offering valuable insights into their fracture behavior and strengthening mechanisms.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.