Computer Science > Machine Learning
[Submitted on 21 Nov 2024]
Title:Multi-agent reinforcement learning strategy to maximize the lifetime of Wireless Rechargeable
View PDF HTML (experimental)Abstract:The thesis proposes a generalized charging framework for multiple mobile chargers to maximize the network lifetime and ensure target coverage and connectivity in large scale WRSNs. Moreover, a multi-point charging model is leveraged to enhance charging efficiency, where the MC can charge multiple sensors simultaneously at each charging location. The thesis proposes an effective Decentralized Partially Observable Semi-Markov Decision Process (Dec POSMDP) model that promotes Mobile Chargers (MCs) cooperation and detects optimal charging locations based on realtime network information. Furthermore, the proposal allows reinforcement algorithms to be applied to different networks without requiring extensive retraining. To solve the Dec POSMDP model, the thesis proposes an Asynchronous Multi Agent Reinforcement Learning algorithm (AMAPPO) based on the Proximal Policy Optimization algorithm (PPO).
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.