Computer Science > Computation and Language
[Submitted on 21 Nov 2024]
Title:An Experimental Study on Data Augmentation Techniques for Named Entity Recognition on Low-Resource Domains
View PDF HTML (experimental)Abstract:Named Entity Recognition (NER) is a machine learning task that traditionally relies on supervised learning and annotated data. Acquiring such data is often a challenge, particularly in specialized fields like medical, legal, and financial sectors. Those are commonly referred to as low-resource domains, which comprise long-tail entities, due to the scarcity of available data. To address this, data augmentation techniques are increasingly being employed to generate additional training instances from the original dataset. In this study, we evaluate the effectiveness of two prominent text augmentation techniques, Mention Replacement and Contextual Word Replacement, on two widely-used NER models, Bi-LSTM+CRF and BERT. We conduct experiments on four datasets from low-resource domains, and we explore the impact of various combinations of training subset sizes and number of augmented examples. We not only confirm that data augmentation is particularly beneficial for smaller datasets, but we also demonstrate that there is no universally optimal number of augmented examples, i.e., NER practitioners must experiment with different quantities in order to fine-tune their projects.
Submission history
From: Arthur Elwing Torres [view email][v1] Thu, 21 Nov 2024 19:45:48 UTC (931 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.