Statistics > Machine Learning
[Submitted on 22 Nov 2024]
Title:Sparsifying Suprema of Gaussian Processes
View PDF HTML (experimental)Abstract:We give a dimension-independent sparsification result for suprema of centered Gaussian processes: Let $T$ be any (possibly infinite) bounded set of vectors in $\mathbb{R}^n$, and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the canonical Gaussian process on $T$. We show that there is an $O_\varepsilon(1)$-size subset $S \subseteq T$ and a set of real values $\{c_s\}_{s \in S}$ such that $\sup_{s \in S} \{\boldsymbol{X}_s + c_s\}$ is an $\varepsilon$-approximator of $\sup_{t \in T} {\boldsymbol{X}}_t$. Notably, the size of $S$ is completely independent of both the size of $T$ and of the ambient dimension $n$.
We use this to show that every norm is essentially a junta when viewed as a function over Gaussian space: Given any norm $\nu(x)$ on $\mathbb{R}^n$, there is another norm $\psi(x)$ which depends only on the projection of $x$ along $O_\varepsilon(1)$ directions, for which $\psi({\boldsymbol{g}})$ is a multiplicative $(1 \pm \varepsilon)$-approximation of $\nu({\boldsymbol{g}})$ with probability $1-\varepsilon$ for ${\boldsymbol{g}} \sim N(0,I_n)$.
We also use our sparsification result for suprema of centered Gaussian processes to give a sparsification lemma for convex sets of bounded geometric width: Any intersection of (possibly infinitely many) halfspaces in $\mathbb{R}^n$ that are at distance $O(1)$ from the origin is $\varepsilon$-close, under $N(0,I_n)$, to an intersection of only $O_\varepsilon(1)$ many halfspaces.
We describe applications to agnostic learning and tolerant property testing.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.