Physics > Medical Physics
[Submitted on 22 Nov 2024]
Title:In vivo 4D x-ray dark-field lung imaging in mice
View PDF HTML (experimental)Abstract:X-ray dark-field imaging is well-suited to visualizing the health of the lungs because the alveoli create a strong dark-field signal. However, time-resolved and tomographic (i.e., 4D) dark-field imaging is challenging, since most x-ray dark-field techniques require multiple sample exposures, captured while scanning the position of crystals or gratings. Here, we present the first in vivo 4D x-ray dark-field lung imaging in mice. This was achieved by synchronizing the data acquisition process of a single-exposure grid-based imaging approach with the breath cycle. The short data acquisition time per dark-field projection made this approach feasible for 4D x-ray dark-field imaging by minimizing the motion-blurring effect, the total time required and the radiation dose imposed on the sample. Images were captured from a control mouse and from mouse models of muco-obstructive disease and lung cancer, where a change in the size of the alveoli was expected. This work demonstrates that the 4D dark-field signal provides complementary information that is inaccessible from conventional attenuation-based CT images, in particular, how the size of the alveoli from different parts of the lungs changes throughout a breath cycle, with examples shown across the different models. By quantifying the dark-field signal and relating it to other physical properties of the alveoli, this technique could be used to perform functional lung imaging that allows the assessment of both global and regional lung conditions where the size or expansion of the alveoli is affected.
Current browse context:
physics.med-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.