Mathematics > Numerical Analysis
[Submitted on 22 Nov 2024]
Title:Fast-Decaying Polynomial Reproduction
View PDF HTML (experimental)Abstract:Polynomial reproduction plays a relevant role in deriving error estimates for various approximation schemes. Local reproduction in a quasi-uniform setting is a significant factor in the estimation of error and the assessment of stability but for some computationally relevant schemes, such as Rescaled Localized Radial Basis Functions (RL-RBF), it becomes a limitation. To facilitate the study of a greater variety of approximation methods in a unified and efficient manner, this work proposes a framework based on fast decaying polynomial reproduction: we do not restrict to compactly supported basis functions, but we allow the basis function decay to infinity as a function of the separation distance. Implementing fast decaying polynomial reproduction provides stable and convergent methods, that can be smooth when approximating by moving least squares otherwise very efficient in the case of linear programming problems. All the results presented in this paper concerning the rate of convergence, the Lebesgue constant, the smoothness of the approximant, and the compactness of the support have been verified numerically, even in the multivariate setting.
Submission history
From: Giacomo Cappellazzo [view email][v1] Fri, 22 Nov 2024 13:44:53 UTC (1,445 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.