Computer Science > Neural and Evolutionary Computing
[Submitted on 7 Nov 2024]
Title:Memory-Driven Metaheuristics: Improving Optimization Performance
View PDFAbstract:Metaheuristics are stochastic optimization algorithms that mimic natural processes to find optimal solutions to complex problems. The success of metaheuristics largely depends on the ability to effectively explore and exploit the search space. Memory mechanisms have been introduced in several popular metaheuristic algorithms to enhance their performance. This chapter explores the significance of memory in metaheuristic algorithms and provides insights from well-known algorithms. The chapter begins by introducing the concept of memory, and its role in metaheuristic algorithms. The key factors influencing the effectiveness of memory mechanisms are discussed, such as the size of the memory, the information stored in memory, and the rate of information decay. A comprehensive analysis of how memory mechanisms are incorporated into popular metaheuristic algorithms is presented and concludes by highlighting the importance of memory in metaheuristic performance and providing future research directions for improving memory mechanisms. The key takeaways are that memory mechanisms can significantly enhance the performance of metaheuristics by enabling them to explore and exploit the search space effectively and efficiently, and that the choice of memory mechanism should be tailored to the problem domain and the characteristics of the search space.
Submission history
From: Salar Farahmand-Tabar [view email][v1] Thu, 7 Nov 2024 13:27:03 UTC (1,121 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.