Computer Science > Logic in Computer Science
[Submitted on 22 Nov 2024]
Title:Advances in Algorithmic Meta Theorems
View PDF HTML (experimental)Abstract:Tractability results for the model checking problem of logics yield powerful algorithmic meta theorems of the form: Every computational problem expressible in a logic $L$ can be solved efficiently on every class $\mathscr{C}$ of structures satisfying certain conditions. The most prominent logics studied in the field are (counting) monadic second-order logic (C)MSO, and first-order logic FO and its extensions. The complexity of CMSO model checking in general and of FO model checking on monotone graph classes is very well understood. In recent years there has been a rapid and exciting development of new algorithmic meta theorems. On the one hand there has been major progress for FO model checking on hereditary graph classes. This progress was driven by the development of a combinatorial structure theory for the logically defined monadically stable and monadically dependent graph classes, as well as by the advent of the new width measure twinwidth. On the other hand, new algorithmic meta theorems for new logics with expressive power between FO and CMSO offer a new unifying view on methods like the irrelevant vertex technique and recursive understanding. In this paper we overview the recent advances in algorithmic meta theorems and provide rough sketches for the methods to prove them.
Submission history
From: Sebastian Siebertz [view email][v1] Fri, 22 Nov 2024 22:15:14 UTC (146 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.