Computer Science > Machine Learning
[Submitted on 22 Nov 2024]
Title:AdamZ: An Enhanced Optimisation Method for Neural Network Training
View PDF HTML (experimental)Abstract:AdamZ is an advanced variant of the Adam optimiser, developed to enhance convergence efficiency in neural network training. This optimiser dynamically adjusts the learning rate by incorporating mechanisms to address overshooting and stagnation, that are common challenges in optimisation. Specifically, AdamZ reduces the learning rate when overshooting is detected and increases it during periods of stagnation, utilising hyperparameters such as overshoot and stagnation factors, thresholds, and patience levels to guide these adjustments. While AdamZ may lead to slightly longer training times compared to some other optimisers, it consistently excels in minimising the loss function, making it particularly advantageous for applications where precision is critical. Benchmarking results demonstrate the effectiveness of AdamZ in maintaining optimal learning rates, leading to improved model performance across diverse tasks.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.