Mathematics > Numerical Analysis
[Submitted on 23 Nov 2024]
Title:On Two Conservative HDG Schemes for Nonlinear Klein-Gordon Equation
View PDF HTML (experimental)Abstract:In this article, a hybridizable discontinuous Galerkin (HDG) method is proposed and analyzed for the Klein-Gordon equation with local Lipschitz-type non-linearity. {\it A priori} error estimates are derived, and it is proved that approximations of the flux and the displacement converge with order $O(h^{k+1}),$ where $h$ is the discretizing parameter and $k$ is the degree of the piecewise polynomials to approximate both flux and displacement variables. After post-processing of the semi-discrete solution, it is shown that the post-processed solution converges with order $O(h^{k+2})$ for $k \geq 1.$ Moreover, a second-order conservative finite difference scheme is applied to discretize in time %second-order convergence in time. and it is proved that the discrete energy is conserved with optimal error estimates for the completely discrete method. %Since at each time step, one has to solve a nonlinear system of algebraic equations, To avoid solving a nonlinear system of algebraic equations at each time step, a non-conservative scheme is proposed, and its error analysis is also briefly established. Moreover, another variant of the HDG scheme is analyzed, and error estimates are established. Finally, some numerical experiments are conducted to confirm our theoretical findings.
Submission history
From: Amiya Pani Professor [view email][v1] Sat, 23 Nov 2024 14:15:51 UTC (39 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.