Quantitative Biology > Biomolecules
[Submitted on 23 Nov 2024]
Title:Accelerated Hydration Site Localization and Thermodynamic Profiling
View PDF HTML (experimental)Abstract:Water plays a fundamental role in the structure and function of proteins and other biomolecules. The thermodynamic profile of water molecules surrounding a protein are critical for ligand binding and recognition. Therefore, identifying the location and thermodynamic behavior of relevant water molecules is important for generating and optimizing lead compounds for affinity and selectivity to a given target. Computational methods have been developed to identify these hydration sites, but are largely limited to simplified models that fail to capture multi-body interactions, or dynamics-based methods that rely on extensive sampling. Here we present a method for fast and accurate localization and thermodynamic profiling of hydration sites for protein structures. The method is based on a geometric deep neural network trained on a large, novel dataset of explicit water molecular dynamics simulations. We confirm the accuracy and robustness of our model on experimental data and demonstrate it's utility on several case studies.
Submission history
From: Matthew Masters [view email][v1] Sat, 23 Nov 2024 17:58:58 UTC (10,025 KB)
Current browse context:
q-bio.BM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.