Quantitative Biology > Populations and Evolution
[Submitted on 23 Nov 2024]
Title:Circuit design in biology and machine learning. II. Anomaly detection
View PDFAbstract:Anomaly detection is a well-established field in machine learning, identifying observations that deviate from typical patterns. The principles of anomaly detection could enhance our understanding of how biological systems recognize and respond to atypical environmental inputs. However, this approach has received limited attention in analyses of cellular and physiological circuits. This study builds on machine learning techniques -- such as dimensionality reduction, boosted decision trees, and anomaly classification -- to develop a conceptual framework for biological circuits. One problem is that machine learning circuits tend to be unrealistically large for use by cellular and physiological systems. I therefore focus on minimal circuits inspired by machine learning concepts, reduced to cellular scale. Through illustrative models, I demonstrate that small circuits can provide useful classification of anomalies. The analysis also shows how principles from machine learning -- such as temporal and atemporal anomaly detection, multivariate signal integration, and hierarchical decision-making cascades -- can inform hypotheses about the design and evolution of cellular circuits. This interdisciplinary approach enhances our understanding of cellular circuits and highlights the universal nature of computational strategies across biological and artificial systems.
Current browse context:
q-bio.PE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.