Astrophysics > Solar and Stellar Astrophysics
[Submitted on 23 Nov 2024]
Title:Circumbinary disks in post common envelope binary systems with compact objects
View PDF HTML (experimental)Abstract:We conduct a population synthesis study using the binary population synthesis code compas to explore the formation of circumbinary disks (CBDs) following the common envelope evolution (CEE) phase of a giant star and a neutron star (NS) or black hole (BH). We focus on massive binary systems that evolve into double compact object (DCO) binaries after the exposed core of the giant collapses to form a second NS or BH. A CBD around the binary system of the giant's core and the compact object lives for a short time at the termination of the CEE phase and alters the orbital evolution of the binary. We parameterize the conditions for CBD formation in post-CEE binaries and present characteristics of DCO progenitors that are likely or unlikely to form CBDs. We find that CBD formation is most common in BH-BH binaries and NS-NS binaries that are expected to merge within Hubble time. Furthermore, we find that the interaction of the CBD with the core - NS/BH system at the termination of the CEE reduces the expected rate of DCO mergers, regardless of whether these binaries tighten or expand due to this interaction. If the binary system loses angular momentum to the CBD, it may produce a luminous transient due to a merger between the NS/BH and the core of the giant rather than gravitational wave sources. Thus, accounting for post-CEE CBD formation and its interaction with the binary system in population synthesis studies is significant for obtaining reliable predictions of the gravitational wave event rates expected by current detectors.
Submission history
From: Aldana Grichener [view email][v1] Sat, 23 Nov 2024 21:11:20 UTC (3,780 KB)
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.