Quantum Physics
[Submitted on 25 Nov 2024]
Title:Simulation of two-dimensional electronic spectroscopy on a near-term quantum computer using a probe qubit protocol
View PDF HTML (experimental)Abstract:Two-dimensional electronic spectroscopy (2DES) is a powerful tool for exploring quantum effects in energy transport within photosynthetic systems and investigating novel material properties. However, simulating the dynamics of these experiments poses significant challenges for classical computers due to the large system sizes and long timescales involved. This paper introduces the probe qubit protocol (PQP)-for quantum simulation of 2DES on near-term quantum devices-addressing these challenges. The PQP offers several enhancements over standard methods, notably reducing computational resources by requiring only a single-qubit measurement per circuit run and achieving Heisenberg scaling in detection frequency resolution, without the need to apply expensive controlled evolution operators in the quantum circuit. The implementation of the PQP protocol requires only one additional ancilla qubit, the probe qubit, with one-to-all connectivity and two-qubit interactions between each system and probe qubits. We evaluate the computational resources necessary for this protocol in detail, demonstrating its function as a dynamic frequency-filtering method through numerical simulations. We find that simulations of the PQP on classical and quantum computers enable a reduction on the number of measurements, i.e. simulation runtime, and memory savings of several orders of magnitude relatively to standard quantum simulation protocols of 2DES. The paper discusses the applicability of the PQP on near-term quantum devices and highlights potential applications where this spetroscopy simulation protocol could provide significant speedups over standard approaches such as the quantum simulation of 2DES applied to the Fenna-Matthews-Olson (FMO) complex in green sulphur bacteria.
Submission history
From: José D. Guimarães [view email][v1] Mon, 25 Nov 2024 11:13:57 UTC (25,173 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.