Computer Science > Computation and Language
[Submitted on 25 Nov 2024]
Title:The Two-Hop Curse: LLMs trained on A->B, B->C fail to learn A-->C
View PDFAbstract:While LLMs excel at multi-hop questions (e.g. "Who is the spouse of the performer of Imagine?") when using chain-of-thought reasoning (CoT), they struggle when forced to reason internally (without CoT). Previous work on the size and nature of this gap produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where the above-chance performance constitutes undeniable evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B Instruct and GPT-4o) on fictional facts and confirm that they generalize to answering two-hop questions about them using CoT. We find that models can perform latent reasoning when facts appear together during training or in the prompt. However, to our surprise, models completely fail at two-hop reasoning without CoT when learned facts only appear in different documents, achieving chance-level accuracy and chance-level test loss. We call this complete failure to compose separately learned facts the Two-Hop Curse. Moreover, we evaluate 9 frontier LLMs on real-world facts, finding that models completely fail at two-hop no-CoT reasoning for over half of question categories while maintaining partial success with CoT across most categories. These results suggest that LLMs lack a general capability for latent multi-hop reasoning independent of the question type.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.