Mathematics > Numerical Analysis
This paper has been withdrawn by Zhengrong Xie
[Submitted on 25 Nov 2024 (v1), last revised 26 Nov 2024 (this version, v2)]
Title:Runge-Kutta Discontinuous Galerkin Method Based on Flux Vector Splitting with Constrained Optimization-based TVB(D)-minmod Limiter for Solving Hyperbolic Conservation Laws
No PDF available, click to view other formatsAbstract:The flux vector splitting (FVS) method has firstly been incorporated into the discontinuous Galerkin (DG) framework for reconstructing the numerical fluxes required for the spatial semi-discrete formulation, setting it apart from the conventional DG approaches that typically utilize the Lax-Friedrichs flux scheme or classical Riemann solvers. The control equations of hyperbolic conservation systems are initially reformulated into a flux-split form. Subsequently, a variational approach is applied to this flux-split form, from which a DG spatial semi-discrete scheme based on FVS is derived. In order to suppress numerical pseudo-oscillations, the smoothness measurement function IS from the WENO limiter is integrated into the TVB(D)-minmod limiter, constructing an optimization problem based on the smoothness factor constraint, thereby realizing a TVB(D)-minmod limiter applicable to arbitrary high-order polynomial approximation. Subsequently, drawing on the ``reconstructed polynomial and the original high-order scheme's L2 -error constraint'' from the literature [1] , combined with our smoothness factor constraint, a bi-objective optimization problem is formulated to enable the TVB(D)-minmod limiter to balance oscillation suppression and high precision. As for hyperbolic conservation systems, limiters are typically required to be used in conjunction with local characteristic decomposition. To transform polynomials from the physical space to the characteristic space, an interpolation-based characteristic transformation scheme has been proposed, and its equivalence with the original moment characteristic transformation has been demonstrated in one-dimensional scenarios. Finally, the concept of ``flux vector splitting based on Jacobian eigenvalue decomposition'' has been applied to the conservative linear scalar transport equations and the nonlinear Burgers' equation.
Submission history
From: Zhengrong Xie [view email][v1] Mon, 25 Nov 2024 13:21:03 UTC (9,326 KB)
[v2] Tue, 26 Nov 2024 10:23:52 UTC (1 KB) (withdrawn)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.