Computer Science > Machine Learning
[Submitted on 25 Nov 2024]
Title:Lion Cub: Minimizing Communication Overhead in Distributed Lion
View PDF HTML (experimental)Abstract:Communication overhead is a key challenge in distributed deep learning, especially on slower Ethernet interconnects, and given current hardware trends, communication is likely to become a major bottleneck. While gradient compression techniques have been explored for SGD and Adam, the Lion optimizer has the distinct advantage that its update vectors are the output of a sign operation, enabling straightforward quantization. However, simply compressing updates for communication and using techniques like majority voting fails to lead to end-to-end speedups due to inefficient communication algorithms and reduced convergence. We analyze three factors critical to distributed learning with Lion: optimizing communication methods, identifying effective quantization methods, and assessing the necessity of momentum synchronization. Our findings show that quantization techniques adapted to Lion and selective momentum synchronization can significantly reduce communication costs while maintaining convergence. We combine these into Lion Cub, which enables up to 5x speedups in end-to-end training compared to Lion. This highlights Lion's potential as a communication-efficient solution for distributed training.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.