Astrophysics > Solar and Stellar Astrophysics
[Submitted on 25 Nov 2024]
Title:Forecasting Shock-associated Energetic Particle Intensities in the Inner Heliosphere: A Proof-of-Concept Capability for the PUNCH Mission
View PDFAbstract:Solar energetic particles (SEPs) associated with shocks driven by fast coronal mass ejections (CMEs) or shocks developed by corotating interaction regions (CIRs) often extend to high energies, and are thus key elements of space weather. The PUNCH mission, set to be launched in 2025, is equipped with photometric that enables 3D tracking of solar wind structures in the interplanetary space through polarized light. Tracking techniques are used to estimate speeds and speed gradients of solar structures, including speed jumps at fast shocks. We report on a strong and a robust relation between the shock speed jump magnitude at CME and CIR shocks and the peak fluxes of associated energetic particles from the analysis of 59 CME-driven shocks and 74 CIRs observed by Wind/STEP between 1997-2023. We demonstrate that this relation, along with PUNCH anticipated observations of solar structures can be used to forecast shock-associated particle events close to the Sun; thus, advancing and providing a crucial input to forecasting of SEP fluxes in the heliosphere.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.