Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Nov 2024]
Title:The apparent and cosmic rates of short gamma-ray bursts
View PDF HTML (experimental)Abstract:The short gamma-ray burst (sGRB), GRB~170817A, is often considered a rare event. However, its inferred event rate, $\mathcal{O}(100s)\ \text{Gpc}^{-3}\ \text{yr}^{-1}$, exceeds cosmic sGRB rate estimates from high-redshift samples by an order of magnitude. This discrepancy can be explained by geometric effects related to the structure of the relativistic jet. We first illustrate how adopting a detector flux threshold point estimate rather than an efficiency function, can lead to a large variation in rate estimates. Simulating the Fermi-GBM sGRB detection efficiency, we then show that for a given a universal structured jet profile, one can model a geometric bias with redshift. Assuming different jet profiles, we show a geometrically scaled rate of GRB~170817A is consistent with the cosmic beaming uncorrected rate estimates of short $\gamma$-ray bursts (sGRBs) and that geometry can boost observational rates within $\mathcal{O}(100s)$\,Mpc. We find an apparent GRB~170817A rate of $303_{-300}^{+1580}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ which when corrected for geometry yields $6.15_{-6.06}^{+31.2}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ and $3.34_{-3.29}^{+16.7}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ for two different jet profiles, consistent with pre-2017 estimates of the isotropic sGRB rate. Our study shows how jet structure can impact rate estimations and could allow one to test structured jet profiles. We finally show that modelling the maximum structured jet viewing angle with redshift can transform a cosmic beaming uncorrected rate to a representative estimate of the binary neutron star merger rate. We suggest this framework can be used to demonstrate parity with merger rates or to yield estimates of the successful jet fraction of sGRBs.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.