Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Nov 2024]
Title:The unreasonable effectiveness of the $n Σv$ approximation
View PDF HTML (experimental)Abstract:In kinetic theory, the classic $n \Sigma v$ approach calculates the rate of particle interactions from local quantities: the number density of particles $n$, the cross-section $\Sigma$, and the average relative speed $v$. In stellar dynamics, this formula is often applied to problems in collisional (i.e. dense) environments such as globular and nuclear star clusters, where blue stragglers, tidal capture binaries, binary ionizations, and micro-tidal disruptions arise from rare close encounters. The local $n \Sigma v$ approach implicitly assumes the ergodic hypothesis, which is not well motivated for the densest star systems in the Universe. In the centers of globular and nuclear star clusters, orbits close into 1D ellipses because of the degeneracy of the potential (either Keplerian or harmonic). We find that the interaction rate in perfectly Keplerian or harmonic potentials is determined by a global quantity -- the number of orbital intersections -- and that this rate can be far lower or higher than the ergodic $n \Sigma v$ estimate. However, we find that in most astrophysical systems, deviations from a perfectly Keplerian or harmonic potential (due to e.g. granularity or extended mass) trigger sufficient orbital precession to recover the $n \Sigma v$ interaction rate. Astrophysically relevant failures of the $n \Sigma v$ approach only seem to occur for tightly bound stars orbiting intermediate-mass black holes, or for the high-mass end of collisional cascades in certain debris disks.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.