Quantum Physics
[Submitted on 21 Nov 2024]
Title:EQNN: Enhanced Quantum Neural Network
View PDFAbstract:With the maturation of quantum computing technology, research has gradually shifted towards exploring its applications. Alongside the rise of artificial intelligence, various machine learning methods have been developed into quantum circuits and algorithms. Among them, Quantum Neural Networks (QNNs) can map inputs to quantum circuits through Feature Maps (FMs) and adjust parameter values via variational models, making them applicable in regression and classification tasks. However, designing a FM that is suitable for a given application problem is a significant challenge. In light of this, this study proposes an Enhanced Quantum Neural Network (EQNN), which includes an Enhanced Feature Map (EFM) designed in this research. This EFM effectively maps input variables to a value range more suitable for quantum computing, serving as the input to the variational model to improve accuracy. In the experimental environment, this study uses mobile data usage prediction as a case study, recommending appropriate rate plans based on users' mobile data usage. The proposed EQNN is compared with current mainstream QNNs, and experimental results show that the EQNN achieves higher accuracy with fewer quantum logic gates and converges to the optimal solution faster under different optimization algorithms.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.