Astrophysics
[Submitted on 15 Apr 2003 (v1), last revised 30 Apr 2003 (this version, v2)]
Title:Detailed Analysis of Nearby Bulgelike Dwarf Stars III. Alpha and Heavy-element abundances
View PDFAbstract: The present sample of nearby bulgelike dwarf stars has kinematics and metallicities characteristic of a probable inner disk or bulge origin. Ages derived by using isochrones give 10-11 Gyr for these stars and metallicities are in the range -0.80< [Fe/H]< +0.40. We calculate stellar parameters from spectroscopic data, and chemical abundances of Mg, Si, Ca, Ti, La, Ba, Y, Zr and Eu are derived by using spectrum synthesis.
We found that [alpha-elements/Fe] show different patterns depending on the element. Si, Ca and Ti-to-iron ratios decline smoothly for increasing metallicities, and follow essentially the disk pattern. O and Mg, products of massive supernovae, and also the r-process element Eu, are overabundant relative to disk stars, showing a steeper decline for metallicities [Fe/H] > -0.3 dex. [s-elements/Fe] roughly track the solar values with no apparent trend with metallicity for [Fe/H] < 0, showing subsolar values for the metal rich stars. Both kinematical and chemical properties of the bulgelike stars indicate a distinct identity of this population when compared to disk stars.
Submission history
From: Luciana Pompeia [view email][v1] Tue, 15 Apr 2003 14:09:52 UTC (173 KB)
[v2] Wed, 30 Apr 2003 22:11:00 UTC (173 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.