Astrophysics
[Submitted on 24 Apr 2003]
Title:An analysis of two-layer models for circumstellar disks
View PDFAbstract: The two-layer disk models of Chiang & Goldreich (1997, henceforth CG) and its derivatives are popular among astronomers because of their simplicity and the clear predictions they make for the SEDs of T Tauri stars and Herbig Ae/Be stars. Moreover, they can be computed quickly, which is a great advantage when fitting observations using automated procedures. In this paper we wish to assess the accuracy and reliability of 2-layer models, by comparing them to detailed vertical structure models with accurate 1+1D radiative transfer. We focus on the shape of the SED, and the predicted height and "flaring index" of the disk. We first consider models where scattering is set to zero. We find that 2-layer models overestimate significantly the near-infrared flux, and we suggest a simple way of correcting this effect, at least in part. At longer wavelengths, the SED of two-layer models often show a two-bump structure, which is absent in 1+1D models. Nevertheless, overall agreement is reasonably good, and the differences are in most cases within 30%. At (sub)-mm wavelengths the differences may even be less. The shape of the disk, as measured by its pressure and surface scale height and by the flaring angle are also well reproduced by two-layer models. When scattering is included in the 1+1D models, the differences become larger, especially in the near-infrared. We suggest simple ways to include scattering in two-layer models and discuss their reliability. We do not compare the two-layer models to full 2-D/3-D models, so the conclusions remain valid only within the annulus-by-annulus approximation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.