Astrophysics
[Submitted on 16 Sep 2003 (v1), last revised 4 Dec 2003 (this version, v2)]
Title:Theoretical Examination of the Lithium Depletion Boundary
View PDFAbstract: We explore the sensitivity in open cluster ages obtained by the lithium depletion boundary (LDB) technique to the stellar model input physics. The LDB age technique is limited to open clusters with ages ranging from 20 to 200 Myr. Effective 1-sig errors in the LDB technique due to uncertain input physics are roughly 3% at the oldest age increasing to 8% at the youngest age. Bolometric correction uncertainties add an additional 10 to 6% error to the LDB age technique for old and young clusters, respectively. Rotation rates matching the observed fastest rotators in the Pleiades affect LDB ages by less than 2%. The range of rotation rates in an open cluster are expected to ``smear'' the LDB location by only 0.02 mag for a Pleiades age cluster increasing to 0.06 mag for a 20 Myr cluster. Thus, the observational error of locating the LDB (~7-10%) and the bolometric correction uncertainty currently dominate the error in LDB ages. For our base case, we formally derive a LDB age of 148 +- 19 Myr for the Pleiades, where the error includes 8, 3, and 9% contributions from observational, theoretical, and bolometric correction sources, respectively. A maximally plausible 0.3 magnitude shift in the I-band bolometric correction to reconcile main sequence isochrone fits with the observed (V-I) color for the low mass Pleiades members results in an age of 126 +- 11 Myr, where the error includes observational and theoretical errors only. Upper main-sequence-fitting ages that do not include convective core overshoot for the Pleiades (~75 Myr) are ruled out by the LDB age technique.
Submission history
From: Christopher J. Burke [view email][v1] Tue, 16 Sep 2003 20:18:56 UTC (40 KB)
[v2] Thu, 4 Dec 2003 01:53:18 UTC (41 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.